Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.

نویسندگان

  • Jiankuai Diao
  • Deepak Srivastava
  • Madhu Menon
چکیده

Using molecular dynamics simulations with Tersoff reactive many-body potential for Si-Si, Si-C, and C-C interactions, we have calculated the thermal conductance at the interfaces between carbon nanotube (CNT) and silicon at different applied pressures. The interfaces are formed by axially compressing and indenting capped or uncapped CNTs against 2 x 1 reconstructed Si surfaces. The results show an increase in the interfacial thermal conductance with applied pressure for interfaces with both capped and uncapped CNTs. At low applied pressure, the thermal conductance at interface with uncapped CNTs is found to be much higher than that at interface with capped CNTs. Our results demonstrate that the contact area or the number of bonds formed between the CNT and Si substrate is key to the interfacial thermal conductance, which can be increased by either applying pressure or by opening the CNT caps that usually form in the synthesis process. The temperature and size dependences of interfacial thermal conductance are also simulated. These findings have important technological implications for the application of vertically aligned CNTs as thermal interface materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

単層カーボンナノチューブの熱物性 Thermal Properties of Single - Walled Carbon Nanotubes ○

Single-walled carbon nanotubes (SWNTs) are expected to be the most exciting material in the nanotechnology. In addition to the outstanding electronic, optical and mechanical properties, thermal properties of SWNTs are quite unique with the high thermal conductivity along the tube axis. The molecular dynamics studies of thermal conductivity of a nanotube and thermal conductance between a nanotub...

متن کامل

Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems

This paper estimates the effect of chemical additives like CuO on the interfacial thermal resistance of carbon nanotubes (CNTs) embedded in water. The investigation of thermal properties of CNT nanostructure is carried out using molecular dynamics (MD) simulations. The nanotube was heated to a prescribed temperature, followed by the relaxation of the entire configuration. In the equilibration s...

متن کامل

Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling

Interfacial thermal transport between offset parallel (10,10) single-wall carbon nanotubes is investigated by molecular dynamics simulation and analytical thermal modeling as a function of nanotube spacing, overlap, and length. A four order of magnitude reduction in interfacial thermal resistance is found as the nanotubes are brought into intimate contact. A reduction is also found for longer n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 16  شماره 

صفحات  -

تاریخ انتشار 2008